Rototherm

The Series 700 Pressure and Differential Pressure switches offer accurate, reliable switching in a robust cast enclosure.

- Exd, ExnC, Exia, I.S.
- RANGES FROM 16 BAR TO 600 BAR
- HIGH OVERLOAD RATINGS
- SIMPLE MAINTENANCE
- SAFETY VENT RING

These switches provide excellent repeatability and long in-service life, under both continuous cycling and overload conditions, due to the mechanical restriction of diaphragm travel

A standard feature of the design is the inclusion of a venting and isolation chamber which (in the unlikely event of the process diaphragm failure) will prevent the process entering the switching enclosure.

The setpoint of the switch is adjusted by means of a capstan head screw, located within the lower section of the enclosure. This enables adjustment to be made even when energised, as it does not violate the flameproof integrity of the enclosure.

With over 50 pressure and DP ranges and a wide selection of output switches, diaphragm and pressurechamber materials, and process connections (including flanges), Series 700 switches meet the requirements of a wide range of applications. In addition Rototherm can offer many non-standard options (see back page for details) or customise this product to meet your unique requirements.

Rototherm Series 700 switches can provide many years of maintenance free operation. All models are serviceable and spares, including diaphragm kits and output switch kits are readily available. Drawings and technical data sheets are supplied as standard.

Our extensive stockholding of components and the modular design allows this product to be supplied rapidly to meet customers delivery requirements.

Exd SWITCHES (Cert: Baseefa07ATEX0055X)
Enclosures are certified Exd IIC T4/T5/T6 to EN 60079-0 \& EN 60079-1.

ExnC SWITCHES (Cert: HNLO7ATEX0001X)
Enclosures are certified ExnC IIC T4/T5/T6
\& IP66 $100^{\circ} \mathrm{C}$ to EN60079-0, EN60079-15.
Exia SWITCHES (Cert: Baseefa06ATEX0231X)
Enclosures are certified Exia IIC T5/T6 to EN 60079-0 \& EN 50020 .

I.S. COMPATIBLE

Series 700 switches are classified as simple apparatus, allowing use in an I.S. circuit without individual certification.

M2O $\times 1.5$ ISO

Dimensions in mm Dimensions in mm
Drawing not to scale

Pressure Ranges											
Set Point Ranges (bar)					Diaphragm Material			Chamber Proof Rating (bar)			Typical Dimensions (centreline vertical) HxWxD
Range Code	MIN	MAX	Units	$\begin{gathered} \text { \% } \\ \text { RESET } \end{gathered}$	Code 1	Code 2	Code 7	Anodised Aluminium Code 1	316 St. Steel Code 5	Hastelloy C Code 7	
$\begin{aligned} & 714 \text { PZ } \\ & 715 \text { PZ } \end{aligned}$	$\begin{gathered} -8 \\ -15 \end{gathered}$	$\begin{gathered} 8 \\ 15 \end{gathered}$	mBar	2	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	x	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	x	$250 \times 300 \times 316$
$\begin{aligned} & 724 \text { PZ } \\ & 725 \text { PZ } \end{aligned}$	$\begin{aligned} & -25 \\ & -50 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	mBar	2	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	\bullet	$227 \times 185 \times 195$
$\begin{aligned} & 734 \text { PZ } \\ & 735 \text { PZ } \\ & 736 \text { PZ } \end{aligned}$	$\begin{aligned} & -125 \\ & -250 \\ & -500 \end{aligned}$	$\begin{aligned} & 125 \\ & 250 \\ & 500 \end{aligned}$	mBar	2	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & v \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$220 \times 108 \times 122$
$\begin{aligned} & 744 \text { PZ } \\ & 745 \text { PZ } \\ & 746 \text { PZ } \end{aligned}$	$\begin{gathered} -0.6 \\ -1 \\ -1 \end{gathered}$	$\begin{aligned} & 0.6 \\ & 1.4 \\ & 6.0 \end{aligned}$	bar	2	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	\bullet	$195 \times 100 \times 93$
$\begin{aligned} & 734 \mathrm{P} \\ & 735 \mathrm{P} \\ & 736 \mathrm{P} \\ & 737 \mathrm{P} \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \\ 300 \end{gathered}$	$\begin{gathered} 250 \\ 500 \\ 1200 \\ 3500 \end{gathered}$	mBar	2	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		$220 \times 108 \times 122$
$\begin{aligned} & 744 \mathrm{P} \\ & 745 \mathrm{P} \\ & 746 \mathrm{P} \\ & 74 \mathrm{P} \\ & 747 \mathrm{P} \end{aligned}$	$\begin{gathered} 0.1 \\ 0.2 \\ 0.7 \\ 1 \\ 2 \end{gathered}$	$\begin{aligned} & 1.4 \\ & 3.0 \\ & 7.0 \\ & 10 \\ & 21 \end{aligned}$	bar	2		$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \hline \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 35 \end{aligned}$	$180 \times 100 \times 93$
$\begin{aligned} & 754 \mathrm{P} \\ & 755 \mathrm{P} \\ & 756 \mathrm{P} \\ & 757 \mathrm{P} \\ & 758 \mathrm{P} \end{aligned}$	$\begin{gathered} 1.2 \\ 3 \\ 7 \\ 20 \\ 60 \end{gathered}$	$\begin{gathered} 12 \\ 30 \\ 70 \\ 210 \\ 600 \end{gathered}$	bar	3	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \hline \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{gathered} 250 \\ 250 \\ 250 \\ 350 \\ 1000 \end{gathered}$	$\begin{gathered} 250 \\ 250 \\ 250 \\ 350 \\ 1000 \end{gathered}$	$190 \times 100 \times 93$
Differential Pressure Ranges											
$\begin{aligned} & 714 \text { DPZ } \\ & 715 \text { DPZ } \end{aligned}$	$\begin{gathered} -8 \\ -15 \end{gathered}$	$\begin{gathered} 8 \\ 15 \end{gathered}$	mBar	2.5	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	x	x	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	x	$260 \times 300 \times 316$
$\begin{aligned} & 724 \text { DPZ } \\ & 725 \text { DPZ } \end{aligned}$	$\begin{aligned} & -25 \\ & -50 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	mBar	2.5	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	\bullet	$263 \times 185 \times 195$
$\begin{aligned} & 734 \text { DPZ } \\ & 735 \text { DPZ } \end{aligned}$	$\begin{aligned} & -125 \\ & -250 \end{aligned}$	$\begin{aligned} & 125 \\ & 250 \end{aligned}$	mBar	2.5	$\begin{aligned} & \hline \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \hline \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \hline \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	x	$265 \times 108 \times 122$
$\begin{aligned} & 734 \text { DPZM } \\ & 735 \text { DPZM } \\ & 736 \text { DPZM } \end{aligned}$	$\begin{aligned} & -100 \\ & -200 \\ & -400 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & 400 \end{aligned}$	mBar	3	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \checkmark \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$284 \times 104 \times 122$
$\begin{aligned} & 744 \text { DPZ } \\ & 745 \text { DPZ } \end{aligned}$	$\begin{gathered} \hline-0.9 \\ -1 \end{gathered}$	$\begin{gathered} 0.9 \\ 2 \end{gathered}$	bar	3	$\begin{aligned} & \checkmark \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$233 \times 100 \times 93$
$\begin{aligned} & 734 \text { DP } \\ & 735 \text { DP } \\ & 736 \text { DP } \\ & 737 \text { DP } \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \\ 300 \end{gathered}$	$\begin{gathered} 250 \\ 500 \\ 1200 \\ 3500 \end{gathered}$	mBar	2.5	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		$265 \times 108 \times 122$
$\begin{aligned} & 734 \text { DPM } \\ & 735 \text { DPM } \\ & 736 \text { DPM } \\ & 737 \text { DPM } \end{aligned}$	$\begin{gathered} 20 \\ 40 \\ 100 \\ 300 \end{gathered}$	$\begin{gathered} 200 \\ 400 \\ 1000 \\ 3000 \end{gathered}$	mBar	3	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$284 \times 104 \times 122$
$\begin{aligned} & 744 \text { DP } \\ & 745 \text { DP } \\ & 746 \text { DP } \\ & 747 \text { DP } \end{aligned}$	$\begin{gathered} 0.2 \\ 0.4 \\ 1 \\ 2 \end{gathered}$	$\begin{gathered} 2 \\ 4 \\ 10 \\ 21 \end{gathered}$	bar	2.5		$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 35 \end{aligned}$	$233 \times 100 \times 93$
$\begin{aligned} & 746 \text { DPM } \\ & 747 \text { DPM } \\ & 748 \text { DPM } \end{aligned}$	$\begin{gathered} \hline 0.7 \\ 2 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 21 \\ 100 \end{gathered}$	bar	3	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$284 \times 104 \times 122$
Key to options: $\checkmark=$ available $\quad x=$ not available \quad = check availability with Rototherm Technical Sales											

Notes on Output Switch Selection:

1. Gold contact microswitches are especially well suited for low voltages and currents, or for applications with low switchin frequencies or sulphurous atmospheres. When heavier loads need to be switched preference should usually be given to silver contacts.
2. The use of twin switches will increase the basic reset by 1%.

The combined reset band must not exceed 7%.
3. When twin switches are set up to operate as DPDT, simultaneous operation on both rising and falling pressures cannot be guaranteed due to mechanical variations between individual microswitches.
4. The use of output switch codes $1 \mathrm{~A}, 2 \mathrm{~A}, 1 \mathrm{~B}$ and 2 B will increase the basic reset by 1%.
5. Output switch code 01 cannot be used with an enclosure having two electrical entries.

Notes:

1. Typical dimensions shown on range table are for a $1 / 4^{\prime \prime}$ internal connection and may increase for alternative connection sizes.
2. Dust and weatherproof ratings are IP66 to BS EN 60529 (IE60529).
3. An ' M ' within the range code signifies DP connections suitable for direct mounting of standard equalising manifolds.
4. On some ranges $1 / 2^{\prime \prime}$ NPT connections are via a supplied adaptor.
5. A 'Z' within the range code signifies at or below zero. This is achieved with the use of a stainless steel biasing assembly within the process chamber. If stainless steel is not compatible with the process an alternative ' X ' option is available (e.g. 744PX instead of 744 PZ).
6. A large number of flanged, chemical seal and alternative threaded connections are available as special options. Please contact RotothermTechnical Sales for details.

Series 700 Pressure \& Differential Pressure Switch

Scale Accuracy \& Setpoint Calibration:

A $0-100$ scale is fitted to all switches and provides an approximate indication of the setpoint relative to the range of the switch. The scale is not intended for precise calibration purposes. For precise calibration the scale should be used for initial guidance and the final adjustment made against an instrument sufficiently accurate to meet the site requirements.

Combined Switching Errors \& Maximum Working Pressure (MWP):

In accordance with BS6134 1991:
The sum of the average switching errors and the operating value repeatability will typically not exceed 0.3% of range span, at setpoints of $10 \%, 50 \%$ and 90% of span, at constant calibration and measurement temperatures.

The maximum working pressure of the Series 700 switches is $0.67 \times$ the proof pressure. It should be noted that diaphragm type switches generally have a high overload capability.

Reset (Switching Differential):

The reset varies throughout the range, normally increasing with setpoint, and the figure quoted in the range table is the switching differential value (as defined in BS6134) expressed as a percentage of the span at the mid range setpoint.

Ambient Temperature Ratings:

Enclosures are rated for continuous use over the temperature range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The use of a high T class will reduce the maximum ambient temperature. At T6 the maximum ambient temperature is $40^{\circ} \mathrm{C}$ for Exd, $65^{\circ} \mathrm{C}$ for ExnC and $75^{\circ} \mathrm{C}$ for Exia.

Storage limits for all enclosures are $-50^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.

Exposure of the enclosure to direct sunlight should be such that the heat gain due to absorption of radiant energy does not cause the enclosure temperature to exceed the recommended maximum. Sufficient signal line cooling must always be provided to ensure that heat conduction from the process will not cause the switch enclosure to operate outside the stated ambient temperature limits.

Temperature Coefficient:

The additional error, relative to a setpoint calibration of $20^{\circ} \mathrm{C}$, will not exceed 0.3% per $10^{\circ} \mathrm{C}$ change within the normal ambient temperature range of the switch enclosure.

Process Options:

For switches fitted with metallic diaphragms, a PTFE ring is incorporated on some ranges to provide additional sealing. Should PTFE not be compatible with the process media please contact Rototherm Technical Sales for advice on alternatives.

Standards

This product complies with standard EN60947-5-1:2004 in addition to the standards listed for hazardous area certification.

Specifications

Parameter definitions are in accordance with BS6134:1991 (Pressure and Vacuum Switches).

www.rotothermgroup.com
rototherm@rototherm.co.uk
(UK) +44 1656740551

British Rototherm Group Kenfig Industrial Estate, Margam, Port Talbot SA13 2PW United Kingdom

